二次函数:y=ax2+bx+c (a0)y = ax^2 + bx + c\ (a \neq 0)

一次函数:y=kx+b (k0)y = kx + b\ (k \neq 0)

双曲线:x2a2y2b2=1\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1

椭圆:x2a2+y2b2=1 (a>b>0)\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\ (a > b > 0)

正弦 $\sin\alpha = \frac{\text{对边}}{\text{斜边}} = \frac{AB}{AC}$

余弦 $\cos\alpha = \frac{\text{邻边}}{\text{斜边}} = \frac{BC}{AC}$

正切 $\tan\alpha = \frac{\text{对边}}{\text{邻边}} = \frac{AB}{BC}$

余切 $\cot\alpha = \frac{\text{邻边}}{\text{对边}} = \frac{BC}{AB}$

函数奇偶性:
$\begin{cases} f(-x) = -f(x) & \text{奇} \\ f(-x) = f(x) & \text{偶} \end{cases}$

周期函数:f(x+T)=f(x)f(x + T) = f(x)TT 为周期。

3 条评论

  • 1